Tree gum-based renewable materials: Sustainable applications in nanotechnology, biomedical and environmental fields
نویسندگان
چکیده
منابع مشابه
Hierarchically nanostructured materials for sustainable environmental applications
This review presents a comprehensive overview of the hierarchical nanostructured materials with either geometry or composition complexity in environmental applications. The hierarchical nanostructures offer advantages of high surface area, synergistic interactions, and multiple functionalities toward water remediation, biosensing, environmental gas sensing and monitoring as well as catalytic ga...
متن کاملSynthesis and Characterization of an Enzyme Mediated in situ Forming Hydrogel Based on Gum Tragacanth for Biomedical Applications
Background: The excellent biocompatibility, biodegradability and biological properties of the hydrogels, fabricated using natural polymers, especially polysaccharides, are very advantageous for biomedical applications. Gum tragacanth (GT) is a heterogeneous highly branched anionic polysaccharide, which has been used extensively in food and pharmaceutical industries. Despite, its desirable prop...
متن کاملHarnessing supramolecular peptide nanotechnology in biomedical applications
The harnessing of peptides in biomedical applications is a recent hot topic. This arises mainly from the general biocompatibility of peptides, as well as from the ease of tunability of peptide structure to engineer desired properties. The ease of progression from laboratory testing to clinical trials is evident from the plethora of examples available. In this review, we compare and contrast how...
متن کامل2. Dextran-based materials for biomedical applications
Dextran is a bacterial polysaccharide consisting essentially of -1,6 linked glucopyranoside residues with a small percentage of -1,3 linked residues. In the first part of the chapter we discuss methodologies to chemically modify dextran. Taking into account our previous work, we focus our attention in the oxidation of dextran and in the transesterification of dextran by enzymatic means. We disc...
متن کاملIn vivo Toxicity Investigation of Magnesium Oxide Nanoparticles in Rat for Environmental and Biomedical Applications
Background: Magnesium oxide nanoparticles are characterized with a wide variety of applications and are mass-produced throughout the world. However, questions remain regarding their safety. There has been paucity of toxicology research on their side effects, especially under in vivo conditions. Objectives: The present paper aims at evaluating the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biotechnology Advances
سال: 2018
ISSN: 0734-9750
DOI: 10.1016/j.biotechadv.2018.08.008